Mot clef : Python

Euler 031

Soit {p} une liste {[p_{0},p_{1},\ldots,p_{n-1}]} de valeurs faciales de pièces, triée dans l’ordre croissant. De combien de façons peut-on payer une somme {s} avec des pièces de la valeur faciale indiquée dans la liste {p}? Indication: avec {s=200} et {p=[1,2,5,10,20,50,100,200]} le résultat est {73682}.

Euler 026

On dira que les répresentations décimales de {1/2=0.5} et {1/5=0.2} sont finies car elles aboutissent à une répétition de décimales nulles.
En revanche, celle de {1/7} est infinie: elle s’écrit s’écrit {1/7=0.\overline{142857}}, en notant {\overline{142857}} la répétition indéfinie des chifres {142857}: on exprimera cette situation en disant que le développement de {1/7} est ultimement périodique de période {6}.
Problème: on se donne un entier {N > 2}. Pour quelle valeur de {d}, avec {2\le d \lt N}, la période ultime de {1/d} est-elle la plus élevée?

Euler 023

Un nombre abondant est un entier {n\ge1} dont la somme des diviseurs (y compris {n} lui-même) vérifie {\sigma(n) > 2n}. On peut montrer que tout entier plus grand que 28123 peut s’écrire comme somme de deux nombres abondants (non nécessairement distincts).
Calculer la somme de tous les entiers positifs qui ne peuvent pas s’écrire comme la somme de deux nombres abondants (non nécessairement distincts).

Euler 022

Using euler022.txt, a 46K text file containing over five-thousand first names, begin by sorting it into alphabetical order.
Then working out the alphabetical value for each name, multiply this value by its alphabetical position in the list to obtain a name score.
For example, when the list is sorted into alphabetical order, COLIN, which is worth 3 + 15 + 12 + 9 + 14 = 53, is the 938th name in the list.
So, COLIN would obtain a score of 938\times 53 = 49714.
What is the total of all the name scores in the file?

Euler 021

Soit {d(n)} la somme des diviseurs {k} de {n}, avec {1\le k \lt n}.
Deux entiers positifs {a} et {b} sont dits amiables si {d(a)=b}, {d(b)=a} et {a\ne b}.
Par exemple, les diviseurs stricts de {220} sont {1}, {2}, {4}, {5}, {10}, {11}, {20}, {22}, {44}, {55} et {110}, donc {d(220) = 284}. Les diviseurs stricts de {284} sont {1}, {2}, {4}, {71} et {142}, donc {d(284) = 220}: les deux entiers {220} et {284} sont donc amiables. Calculer la somme de toutes les paires de nombres amiables strictement inférieurs à {N}.

Euler 019

You are given the following information: 1 Jan 1900 was a Monday: thirty days has September, April, June and November. All the rest have thirty-one, saving February alone, which has twenty-eight, rain or shine, and on leap years, twenty-nine. A leap year occurs on any year evenly divisible by 4, but not on a century unless it is divisible by 400. How many Sundays fell on the first of the month during the twentieth century (1 Jan 1901 to 31 Dec 2000)?

Euler 018

On considère une pyramide triangulaire d’entiers. On part du sommet du triangle, et on progresse jusqu’à la ligne du bas, en progressant à chaque étape, soit vers la gauche, soit vers la droite. Quelle est la somme maximum des valeurs correspondant aux différentes routes possibles?

Euler 017

If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total. If all the numbers from 1 to 1000 (one thousand) inclusive were written out in words, how many letters would be used?
NOTE: Do not count spaces or hyphens. For example, 342 (three hundred and forty-two) contains 23 letters and 115 (one hundred and fifteen) contains 20 letters. The use of « and » when writing out numbers is in compliance with British usage.

Euler 015

Soit {N} un entier positif. Si on part du coin en haut à gauche d’une grille de {N\times N} points, et si les seuls déplacements autorisés sont d’un point vers la droite ou vers le bas, combien y a-t-il de routes possibles jusqu’au coin en bas à droite?

Euler 014

La suite de Collatz {(u_{n})_{n\ge1}} est définie par la donnée de {u_{0}} dans {\mathbb{N}^{*}} et par les relations: {u_{n}=n/2} si {n} est pair, et {u_{n}=3n+1} si {n} impair.
Une conjecture célèbre affirme qu’une telle suite finit toujours par retomber sur {1}.
Par exemple, si {u_{0}=13}, on obtient {13\to40\to20\to10\to5 16\to8\to4\to2\to1}.
Quel nombre initial {u_{0}}, avec {u_{0} \le N} (où {N\ge1} est donné) donne la plus longue séquence avant de revenir à {1}?