Mot clef : Polynômes

Majoration de valeurs propres

Soit {M\in \mathcal{M}_{n}(\mathbb{C})}, de polynôme caractéristique {P=\displaystyle\sum\limits_{k=0}^{n}a_{k}X^{k}}.
Montrer que : {\forall \lambda \in \text{Sp}(M),\;|\lambda |\leq\displaystyle\sum\limits_{k=0}^{n}|a_{k}|}.

Équation différentielle de Legendre

On note {U_{n}=(X^{2}-1)^{n}} et {P_{n}=U_n^{(n)}}.
1. Montrer que {P_{n}} vérifie {(E):\ (1-x^{2})y''(x)-2xy'(x)+n(n+1) y(x)=0}.
2. Déterminer les solutions de {(E)} qui sont {\mathcal{C}^{2}} sur {[-1,1]}.
3. Montrer que les P_n sont orthogonaux pour {(P\mid Q)=\displaystyle\int_{-1}^{1}P(t)Q(t)\,\text{d}t}.